160 research outputs found

    The Andaman Islanders in a Regional Genetic Context: Reexamining the Evidence for an Early Peopling of the Archipelago from South Asia

    Get PDF
    The indigenous inhabitants of the Andaman Islands were considered by many early anthropologists to be pristine examples of a negrito substrate of humanity that existed throughout Southeast Asia. Despite over 150 years of research and study, questions over the extent of shared ancestry between Andaman Islanders and other small-bodied, gracile, dark-skinned populations throughout the region are still unresolved. This shared phenotype could be a product of shared history, evolutionary convergence, or a mixture of both. Recent population genetic studies have tended to emphasize long-term physical isolation of the Andaman Islanders and an affinity to ancestral populations of South Asia. We reexamine the genetic evidence from genome-wide autosomal single-nucleotide polymorphism (SNP) data for a shared history between the tribes of Little Andaman (Onge) and Great Andaman, and between these two groups and the rest of South and Southeast Asia (both negrito and non-negrito groups)

    COVID-19 Researches: Where India Stands So Far?

    Get PDF
    By the end of the year 2019, in the month of November first pneumonia-like case of COVID-19 was detected in an individual aged 55 years in the Hubei Province of Central China. However the ‘patient zero’ or the first patient contracted with the disease is still unknown, but it is speculated that first contraction with virus occurred in Wuhan province of China. The rate by which the number of cases of the disease surged in China was remarkable and by the mid of January 2020 cases begin to appear in different parts of the world. WHO declared the COVID-19 outbreak a Public Health Emergency of International Concern by the end of January 2020. Researchers from different parts of the world continue to study the pathogenesis and spread pattern of this disease. This chapter emphasizes upon some of the prominent studies in the field of COVID-19 researches from India. It also focuses upon the ACE2 gene polymorphism which has decreased the susceptibility against the virus amongst human population, and explains how at the molecular level ACE2 receptor concentration may affect the entry of the virus into the host cell. It also highlights the impact of the viral RNA on mitochondrial machinery of the host cell and how it instigates a pro-inflammatory response by declining the efficiency of immune system in whole. We also aim to highlight two potential drug candidates of COVID-19 and how these are performing against the virus according to several studies

    In situ origin of deep rooting lineages of mitochondrial Macrohaplogroup 'M' in India

    Get PDF
    BACKGROUND: Macrohaplogroups 'M' and 'N' have evolved almost in parallel from a founder haplogroup L3. Macrohaplogroup N in India has already been defined in previous studies and recently the macrohaplogroup M among the Indian populations has been characterized. In this study, we attempted to reconstruct and re-evaluate the phylogeny of Macrohaplogroup M, which harbors more than 60% of the Indian mtDNA lineage, and to shed light on the origin of its deep rooting haplogroups. RESULTS: Using 11 whole mtDNA and 2231 partial coding sequence of Indian M lineage selected from 8670 HVS1 sequences across India, we have reconstructed the tree including Andamanese-specific lineage M31 and calculated the time depth of all the nodes. We defined one novel haplogroup M41, and revised the classification of haplogroups M3, M18, and M31. CONCLUSION: Our result indicates that the Indian mtDNA pool consists of several deep rooting lineages of macrohaplogroup 'M' suggesting in-situ origin of these haplogroups in South Asia, most likely in the India. These deep rooting lineages are not language specific and spread over all the language groups in India. Moreover, our reanalysis of the Andamanese-specific lineage M31 suggests population specific two clear-cut subclades (M31a1 and M31a2). Onge and Jarwa share M31a1 branch while M31a2 clade is present in only Great Andamanese individuals. Overall our study supported the one wave, rapid dispersal theory of modern humans along the Asian coast

    Genetic Stratigraphy of Key Demographic Events in Arabia

    Get PDF
    The issue of admixture in human populations is normally addressed by genome-wide (GW) studies, and several approaches have been developed to date admixture events [1,2,3,4,5]. Admixed populations bear chromosomes with segments of DNA from all contributing source groups, the size of which decreases over successive generations until recombination renders them undetectably short. Several algorithms attempt to date admixture events by inferring the size of the nuclear ancestry segments, and these can work well when dating recent episodes in human history, such as the sub-Saharan African input into the New World [6], but they fail to detect several known episodes that took place at earlier times, such as the African input into Iberia [1] and genetic exchanges across the Red Sea [7]. Simulations with the suite of methods available at the ADMIXTOOLS package indicated that these methods could detect admixture events as early as 500 generation ago, but real data did not allow the tracing of such old events [8]. A recent improved algorithm, called GLOBETROTTER, has been used to tackle the detection of the co-occurrence of several mixture events by decomposing each chromosome into a series of haplotypic chunks and then analysing each chunk independently [3], but the problem of detecting ancient events remains. Its application to the systematic screening of worldwide admixture events was able to reveal around 100 events, but all occurring over only the past 4,000 years [3

    Genetic affinities among the lower castes and tribal groups of India: inference from Y chromosome and mitochondrial DNA

    Get PDF
    BACKGROUND: India is a country with enormous social and cultural diversity due to its positioning on the crossroads of many historic and pre-historic human migrations. The hierarchical caste system in the Hindu society dominates the social structure of the Indian populations. The origin of the caste system in India is a matter of debate with many linguists and anthropologists suggesting that it began with the arrival of Indo-European speakers from Central Asia about 3500 years ago. Previous genetic studies based on Indian populations failed to achieve a consensus in this regard. We analysed the Y-chromosome and mitochondrial DNA of three tribal populations of southern India, compared the results with available data from the Indian subcontinent and tried to reconstruct the evolutionary history of Indian caste and tribal populations. RESULTS: No significant difference was observed in the mitochondrial DNA between Indian tribal and caste populations, except for the presence of a higher frequency of west Eurasian-specific haplogroups in the higher castes, mostly in the north western part of India. On the other hand, the study of the Indian Y lineages revealed distinct distribution patterns among caste and tribal populations. The paternal lineages of Indian lower castes showed significantly closer affinity to the tribal populations than to the upper castes. The frequencies of deep-rooted Y haplogroups such as M89, M52, and M95 were higher in the lower castes and tribes, compared to the upper castes. CONCLUSION: The present study suggests that the vast majority (>98%) of the Indian maternal gene pool, consisting of Indio-European and Dravidian speakers, is genetically more or less uniform. Invasions after the late Pleistocene settlement might have been mostly male-mediated. However, Y-SNP data provides compelling genetic evidence for a tribal origin of the lower caste populations in the subcontinent. Lower caste groups might have originated with the hierarchical divisions that arose within the tribal groups with the spread of Neolithic agriculturalists, much earlier than the arrival of Aryan speakers. The Indo-Europeans established themselves as upper castes among this already developed caste-like class structure within the tribes

    The light skin allele of SLC24A5 in South Asians and Europeans shares identity by descent

    Get PDF
    Skin pigmentation is one of the most variable phenotypic traits in humans. A non-synonymous substitution (rs1426654) in the third exon of SLC24A5 accounts for lighter skin in Europeans but not in East Asians. A previous genome-wide association study carried out in a heterogeneous sample of UK immigrants of South Asian descent suggested that this gene also contributes significantly to skin pigmentation variation among South Asians. In the present study, we have quantitatively assessed skin pigmentation for a largely homogeneous cohort of 1228 individuals from the Southern region of the Indian subcontinent. Our data confirm significant association of rs1426654 SNP with skin pigmentation, explaining about 27% of total phenotypic variation in the cohort studied. Our extensive survey of the polymorphism in 1573 individuals from 54 ethnic populations across the Indian subcontinent reveals wide presence of the derived-A allele, although the frequencies vary substantially among populations. We also show that the geospatial pattern of this allele is complex, but most importantly, reflects strong influence of language, geography and demographic history of the populations. Sequencing 11.74 kb of SLC24A5 in 95 individuals worldwide reveals that the rs1426654-A alleles in South Asian and West Eurasian populations are monophyletic and occur on the background of a common haplotype that is characterized by low genetic diversity. We date the coalescence of the light skin associated allele at 22–28 KYA. Both our sequence and genome-wide genotype data confirm that this gene has been a target for positive selection among Europeans. However, the latter also shows additional evidence of selection in populations of the Middle East, Central Asia, Pakistan and North India but not in South India

    Genetic Affinities of the Central Indian Tribal Populations

    Get PDF
    Background: The central Indian state Madhya Pradesh is often called as ‘heart of India ’ and has always been an important region functioning as a trinexus belt for three major language families (Indo-European, Dravidian and Austroasiatic). There are less detailed genetic studies on the populations inhabited in this region. Therefore, this study is an attempt for extensive characterization of genetic ancestries of three tribal populations, namely; Bharia, Bhil and Sahariya, inhabiting this region using haploid and diploid DNA markers. Methodology/Principal Findings: Mitochondrial DNA analysis showed high diversity, including some of the older sublineages of M haplogroup and prominent R lineages in all the three tribes. Y-chromosomal biallelic markers revealed high frequency of Austroasiatic-specific M95-O2a haplogroup in Bharia and Sahariya, M82-H1a in Bhil and M17-R1a in Bhil and Sahariya. The results obtained by haploid as well as diploid genetic markers revealed strong genetic affinity of Bharia (a Dravidian speaking tribe) with the Austroasiatic (Munda) group. The gene flow from Austroasiatic group is further confirmed by their Y-STRs haplotype sharing analysis, where we determined their founder haplotype from the North Munda speaking tribe, while, autosomal analysis was largely in concordant with the haploid DNA results. Conclusions/Significance: Bhil exhibited largely Indo-European specific ancestry, while Sahariya and Bharia showed admixed genetic package of Indo-European and Austroasiatic populations. Hence, in a landscape like India, linguistic labe

    Genetic affinities of the Jewish populations of India

    Get PDF
    Due to the lack of written records or inscription, the origin and affiliation of Indian Jewish populations with other world populations remain contentious. Previous genetic studies have found evidence for a minor shared ancestry of Indian Jewish with Middle Eastern (Jewish) populations. However, these studies (relied on limited individuals), haven’t explored the detailed temporal and spatial admixture process of Indian Jewish populations with the local Indian populations. Here, using large sample size with combination of high resolution biparental (autosomal) and uniparental markers (Y chromosome and mitochondrial DNA), we reconstructed genetic history of Indian Jewish by investigating the patterns of genetic diversity. Consistent with the previous observations, we detected minor Middle Eastern specific ancestry component among Indian Jewish communities, but virtually negligible in their local neighbouring Indian populations. The temporal test of admixture suggested that the first admixture of migrant Jewish populations from Middle East to South India (Cochin) occurred during fifth century. Overall, we concluded that the Jewish migration and admixture in India left a record in their genomes, which can link them to the ‘Jewish Diaspora’

    The genetic structure of south Asian populations as revealed by 650 000 SNPs

    Get PDF
    The analyses of dense marker sets covering the whole genome has revolutionised the field of (human) population genetics. Driven largely by the needs of biomedical research, these new data are helping to unveil our demographic past, exemplified by the study of mtDNA and Y-chromosome variation during the past ∼20 years. We have analysed (Illumina 650K SNPs) over 320 new samples from South and Central Asia and the Caucasus, together with the publicly available databases (HGDP panel and our published data set of ∼600 Eurasian samples) and illustrated the power of full genome analyses by addressing two specific questions. (i) What is the nature of genetic continuity and discontinuity between South Asia, Middle East and Central Asia? (ii) What are the genetic origins of the Munda speakers of India? We use principal component and structure-like analyses to reveal the structure in the genome wide SNP data. The most striking feature of the genetic structure of South Asian populations is the clear separation of the Indus valley and southern India populations. The genetic component prevalent in the latter region is marginal in the former and absent outside South Asia. By contrast, the component ubiquitous to Indus valley is also present (∼30-40 %) among Indo-European speakers from Ganges valley and Dravidic speakers in southern India. Furthermore, this component can also be found in Central Asia and the Caucasus as well as in Middle East. We explored possibilities to identify the source region for this genetic component. Alternative models put the origins of Munda languages speakers either in South Asia (the Munda speakers sport exclusively autochthonous South Asian mtDNA variants) or in Southeast Asia, where the other Austro Asiatic languages have spread. Y-chromosome variation supports the latter model through sharing of hg O2a in both regions. We show that in addition to the dominant ancestry component being shared between the Indian Dravidic and Munda speakers, up to 30% of Munda speakers retain an ancestry component otherwise prevalent in East Asia. There is no widespread sign of South Asian ancestry component in Southeast Asia. This provides genomic support to the model by which Indian Austro-Asiatic populations derive from dispersal from Southeast/East Asia, followed by an extensive admixture with local Indian populations

    Dissecting the influence of Neolithic demic diffusion on Indian Y-chromosome pool through J2-M172 haplogroup

    Get PDF
    The global distribution of J2-M172 sub-haplogroups has been associated with Neolithic demic diffusion. Two branches of J2-M172, J2a-M410 and J2b-M102 make a considerable part of Y chromosome gene pool of the Indian subcontinent. We investigated the Neolithic contribution of demic dispersal from West to Indian paternal lineages, which majorly consists of haplogroups of Late Pleistocene ancestry. To accomplish this, we have analysed 3023 Y-chromosomes from different ethnic populations, of which 355 belonged to J2-M172. Comparison of our data with worldwide data, including Y-STRs of 1157 individuals and haplogroup frequencies of 6966 individuals, suggested a complex scenario that cannot be explained by a single wave of agricultural expansion from Near East to South Asia. Contrary to the widely accepted elite dominance model, we found a substantial presence of J2a-M410 and J2b-M102 haplogroups in both caste and tribal populations of India. Unlike demic spread in Eurasia, our results advocate a unique, complex and ancient arrival of J2a-M410 and J2b-M102 haplogroups into Indian subcontinent
    • …
    corecore